Methods for the economic evaluation of animal diseases

Beate Pinior, Josef Köfer, Franz Rubel

Institute for Veterinary Public Health
University of Veterinary Medicine Vienna
Veterinärplatz 1
1210 Wien

Beate.Pinior@vetmeduni.ac.at
Josef.Köfer@vetmeduni.ac.at
Franz.Rubel@vetmeduni.ac.at

Abstract: Economic analyses for prevention and control of animal diseases are rare. A general approach for measuring the effects of animal diseases is still missing but needed. To address this gap, an overview of existing methods for the evaluation of animal diseases and the determination of their strengths and weaknesses is presented.

1 Introduction

There is an increasing demand for economic analyses for the prevention and control of animal diseases by the European Union [EU06] and the science community [RU09, Dr13]. However, despite its undoubted importance, such analyses have hardly been the subject of scientific investigations [MC96; RU09] due to insufficient data and the lack of general methods to capture the economic effects of animal diseases e.g. spillover-effects on other food branches. The aim of this paper is on the one hand to present different economic methods, which could be used for the economic evaluation of animal diseases and their associated prevention-intervention measures. On the other hand, we work out the strengths and the weaknesses of these methods for the economic evaluation of animal diseases. In order to capture the current state of knowledge about different economic methods for the evaluation of the prevention-intervention measurements of animal diseases, information from the literature was collected using the scientific databases ScienceDirect™, PubMed™; ISI Web of Knowledge™, and Google Scholar™.

2 Results

Costs in the veterinary field can be distinguished, either in costs for prevention e.g. costs for monitoring- or surveillance programs in order to intervene before an enormous economic damage occurs - or intervention measures e.g. costs for culling of animals in
order to mitigate the spread of animal diseases. Costs for intervention measures, in
contrast to the costs for preventive measures, can vary widely [HI11], depending on the
epidemiological development (dependent e.g. on the basic reproduction number (R₀)).

Due to the limited resources in the public sector the question about the effectiveness¹ and
efficiency² of certain prevention- and intervention measures is increasingly raised [Dr13;
St06]. In this context, two economic methods are available in order to compute the
efficiency of prevention- and intervention measures [HO11]:

1) Cost-benefit-analysis and
2) Cost-effectiveness-analysis

As part of a cost-benefit analysis, all cost- and benefit effects are expressed in monetary
units. In this context, all benefits over the time are divided by all costs (benefit-cost
ratio) and the ratio to each other illustrates how much benefits are generated at costs of
one Euro [Ve11]. A discount factor (1+r) is used to convert future costs or benefits of
animal diseases into present values [HÄ11]. With other words, discounting is a “time-
homogenization-method”. However, after [Ve11] the cost-benefit ratio (BCR) represents
a good indicator for the return of investments and hence an indicator for the efficiency of
preventive- and intervention measures. Beside the monetary costs and benefits there are
many parameters, especially benefit parameters, which cannot be quantified in monetary
value (intangible) because there is no market for these parameters [BHP13].
Consequently a price determination is not possible. One solution is to transform
intangible benefits into tangible benefits, which can be expressed in monetary units by
comparing the costs of prevention-and intervention measures with the losses avoided
when these measures are applied [HO11; Hä12]. This transformations are used e.g. in the
recent study by [Hä12] in order to compute the benefit of bluetongue surveillance
programs in the Switzerland. However, often the transformation from intangible to
tangible costs and benefits is not possible. In this context, a cost-effectiveness analysis
can be used in order to demonstrate the degree of achievable effectiveness of preventive-
or intervention measures in relation to their costs. This can be done, by dividing the costs
of preventive- or intervention measures and their effectiveness in non-monetary units
[HÄ11]. For instance, the effectiveness of surveillance programs can be assessed
through expert opinions³, which can be translated into a points system (1 = very low
effectiveness to 5 = very high effectiveness). In general, this approach for the
measurement of effectiveness represents only a proxy for an economic benefit [HÄ11].
Further economic methods that existed in the context of prevention and control of animal
diseases are:

3) Linear programming and
4) Partial budgeting

Linear programming is a method for solving optimization problems. This algebra
 technique is designed for finding the minimum or maximum of a linear function (f(x₀))

¹ Effectiveness describes, if the intended objectives of surveillance have been achieved [Dr13].
² Efficiency indicates, if the objectives have been realized in efficient manner [Dr13].
³ This technique was used in the study by [VA05] in order to measure the effectiveness of the implementation
of control measures for improving the food safety in the dairy industry.
of variables \((a_n x_n)\) by taking into account a set of constraints e.g. \(f(x_n) \leq b\) [HN86 in VA05].

<table>
<thead>
<tr>
<th>Method</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost-benefit-analysis</td>
<td>Different preventive- or intervention measures can be compared directly because costs/benefits are expressed in monetary units</td>
<td>Intangible costs and benefits can not be considered directly</td>
</tr>
<tr>
<td>Cost-effectiveness analysis</td>
<td>An aid in order to consider parameters in the assessment, which are monetarily difficult to assess</td>
<td>Subjective nature of the assessment with respect to the effectiveness of measures;</td>
</tr>
<tr>
<td>Linear programming</td>
<td>Can be used in the veterinary area to identify the least cost set of preventive- or intervention measures with the constraint that a certain level of animal disease control is achieved</td>
<td>Can only be used if there is a guarantee that the variables are independent from each other</td>
</tr>
<tr>
<td>Partial budgeting</td>
<td>Estimates the direct effects of the change in consideration of supply and demand behaviour on market; Focuses attention on the issues that are of interest [MA99];</td>
<td>No clear time horizon can be specified [MA99]; No comparison can be made with alternative investments [MA99];</td>
</tr>
</tbody>
</table>

In general, partial budgeting is a technique, which focuses on the variable costs. This means that only costs that are affected by the proposed intervention are considered [MA99]. In other words, partial budgeting is used as a technique to estimate the economic consequences from some changes, e.g. in trade policies on the market or in production process, which implies that a baseline is needed in order to measure the changes [VA05]. For further description and application of this method, see [MA99; HD97]. It should be mentioned here, that further methods (e.g. economic surplus analysis, policy analysis matrix or multi market models, social accounting matrix or cost-minimization-analysis) for the economic evaluation of animal health and preventive- or intervention measures can be found in the studies by [RWM05] and [WBP12].

3 Conclusion

Different assessment methods for the evaluation of animal diseases are available whereby each method has strengths and weaknesses. The choice of the method depends on the research question, the quality of the data as well as the scope of the economic approach.


